Als Mitglied bekommen Sie an dieser Stelle den Volltext angezeigt. Bitte loggen Sie sich hier ein.
Nichtmitglieder wenden sich bei Interesse bitte an die Geschäftsstelle.
Teske1, 2, N. Kwapil1, 2, A. Purbojo1, Dittrich1, F. Münch1
1Kinderherzzentrum Universitätsklinikum Erlangen, Loschgestraße 15, 91054 Erlangen
2WKK Perfusionsservice GmbH & Co KG, Wernher-von-Braun-Straße 5, 55129 Mainz-Hechtsheim
Kinderherzzentrum Universitätsklinikum Erlangen (Direktor: Prof. Dr. med. Sven Dittrich)
Einleitung: Die Anwendung des kardiopulmonalen Bypasses (CPB) trägt durch die spezielle Pathophysiologie zu Morbidität und Mortalität in der Herzchirurgie bei. Die schnelle Hämodilution am CPB begünstigt dabei die Entstehung von Organödemen. Die daraus resultierende Einschränkung der Organfunktion beeinflusst das klinische Behandlungsergebnis insgesamt negativ. Als eine Gegenmaßnahme wurde 1991 von Naik et al. die modifizierte Ultrafiltration (MUF) eingeführt, um diese negativen, CPB-assoziierten Folgen bei pädiatrischen Patient:innen zu reduzieren. Mit zunehmend miniaturisierten und angepassten CPB-Systemen stellt sich heute die Frage, ob die seit damals etablierte Evidenz zum klinischen Nutzen der MUF für die Patient:innen noch besteht.
Methode: Im September 2021 wurde eine Literaturrecherche zu den Suchbegriffen MUF und CPB durchgeführt. Aus den Suchergebnissen in den PubMed und Cochrane Datenbanken wurden Publikationen der letzten zehn Jahre für eine Analyse identifiziert. Die gefundenen Veröffentlichungen wurden auf aktuelle Erkenntnisse zur MUF in der klinischen Anwendung, nach relevanten Aspekten aufgeschlüsselt, bewertet und beschrieben.
Ergebnisse: Die Mehrzahl der 47 analysierten Publikationen (n = 35) stammen aus dem Bereich der Kinderherzchirurgie, neun Arbeiten befassen sich mit erwachsenen Patient:innen, während drei einen Querschnitt beider Bereiche abbilden. Unter Betrachtung der Gerinnung und Transfusionen finden 45 % der Arbeiten Vorteile für Patient:innen nach MUF, weitere 45 % zeigen gemischte Ergebnisse und nur 10 % sehen in der MUF einen Nachteil. Mit 62 % am häufigsten werden Vorteile durch MUF im Bereich der Hämodynamik ausgewiesen, während in der intensivmedizinischen Nachbehandlung 70 % der Arbeiten gemischte Ergebnisse präsentieren oder keinen Vorteil zeigen können. Arbeiten aus dem Bereich der Kinderherzchirurgie zeigen hierbei die stärkste Evidenz für die Anwendung der MUF.
Schlussfolgerung: Nach Einordnung der aktuellen Studienlage anhand Methodik und Zusammenhängen der Durchführung stellt eine Miniaturisierung der EKZ-Systeme die größte Komponente zur Verbesserung der herzchirurgischen Therapie dar. Die physiologischen Auswirkungen der MUF sowie realisierbare Vorteile durch ein erhöhtes Sauerstoffangebot, optimierte Hämodynamik, verbesserte Gerinnungsund Beatmungsparameter sind vielfältig untersucht. Der Einsatz blutsparender Maßnahmen wie der MUF ist fest in gültigen Leitlinien etabliert und durch Evidenz unterfüttert. Der frühere postoperative Nutzen mit potenzieller Frühextubation ist dabei jedoch noch nicht im Studienfokus angelangt. Die MUF behält jedoch weiterhin, auch unter Anwendung miniaturisierter CPB-Systeme, einen deutlichen Vorteil zur Abmilderung der pathologischen Folgen des CPB.
Introduction: The utilization of cardiopulmonary bypass (CPB) contributes to morbidity and mortality in patients undergoing cardiac surgery due to its specific pathophysiology. In this context, the rapid hemodilution by CPB favors the development of tissue edema. The resulting restriction of organ function negatively affects the overall clinical outcome. As a countermeasure, modified ultrafiltration (MUF) was introduced by Naik et al. in 1991 to reduce these negative, CPB-associated consequences in pediatric patients. With increasingly miniaturized and adapted CPB systems, the question today is whether the established evidence on the clinical benefit of MUF still exists.
Methods: A literature search was conducted in September 2021 using the search terms MUF and CPB. From the search results in the PubMed and Cochrane databases, publications from the last ten years were identified for analysis. The publications found were evaluated for current evidence on MUF, broken down by relevant aspects towards the clinical use of MUF. Results: The majority (n=35) of the 47 publications analyzed originate from pediatric cardiac surgery. Nine papers addressed adult patients, while three represented a cross-section of both fields. Looking at coagulation and transfusions, 45% of the papers do find benefits for patients after MUF, another 45% show mixed results, and only 10% see MUF as a disadvantage. Benefits from MUF are most often reported in regard to hemodynamics at 62%, while for intensive care follow-up, 70% of the papers present mixed results or fail to show any benefit. Papers from the field of pediatric cardiac surgery show the strongest evidence for the use of MUF in this regard.
Conclusion: After categorizing the current state of evidence according to methodology and context of implementation, the miniaturization of ECC systems represents the largest component for improving cardiac surgery-related therapy. The physiological effects of MUF as well as feasible benefits from increased oxygen supply, optimized hemodynamics, improved coagulation, and ventilation parameters are widely studied and understood. The use of blood-sparing measures, such as MUF, is firmly established in current guidelines and supported by evidence. The early postoperative benefits may facilitate early extubation, but this has not yet been the focus of recent research. However, MUF still retains a distinct advantage in mitigating the pathologic consequences of CPB, even with the use of miniaturized CPB systems.
LITERATUR
1. Krawczeski CD. Cardiopulmonary Bypass and AKI: AKI Is Bad, So Let’s Get Beyond the Diagnosis. Front Pediatr. 2019;7:492.
2. Niu J, Zhai G, Zheng A, Zhou J, Jiang S,
Ma J. The Effect of Optimized Ultrafiltration on Perioperative Pulmonary Function During Cardiopulmonary Bypass in Infants Under
10 kg. Frontiers in pediatrics. 2021;9.
3. Greathouse K. Immune and Inflammatory Response after CPB. In: R T, editor.
Extracorporeal Circulation in theory and practice. Lengerich: Pabst Science Publishers; 2020. p. 357-72.
4. Lowell JA, Schifferdecker C, Driscoll DF, Benotti PN, Bistrian BR. Postoperative fluid overload: not a benign problem.
Crit Care Med. 1990;18(7):728-33.
5. Grist G, Whittaker C, Merrigan K, Fenton J, Worrall E, O’Brien J, et al. The correlation of fluid balance changes during cardiopulmona- ry bypass to mortality in pediatric and conge- nital heart surgery patients. J Extra Corpor Technol. 2011;43(4):215-26.
6. de Somer F, Mulholland JW, Bryan MR, Aloisio T, Van Nooten GJ, Ranucci M. O2 deli- very and CO2 production during cardiopulmo- nary bypass as determinants of acute kidney injury: time for a goal-directed perfusion management? Crit Care. 2011;15(4):R192.
7. Magruder JT, Crawford TC, Harness HL, Grimm JC, Suarez-Pierre A, Wierschke C,
et al. A pilot goal-directed perfusion initiative is associated with less acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2017;153(1):118-25 e1.
8. Ranucci M, Carboni G, Cotza M,
de Somer F. Carbon dioxide production during cardiopulmonary bypass: patho- physiology, measure and clinical relevance. Perfusion. 2017;32(1):4-12.
9. Oldeen ME, Angona RE, Hodge A, Klein T. American Society of ExtraCorporeal Technology: Development of Standards and Guidelines for Pediatric and Congenital Perfusion Practice (2019). J Extra Corpor Technol. 2020;52(4):319-26.
10. Pagano D, Milojevic M, Meesters MI, Benedetto U, Bolliger D, von Heymann C, et al. 2017 EACTS/EACTA Guidelines on patient blood management for adult cardiac surgery. Eur J Cardiothorac Surg. 2018;53(1):79-111.
11. Wahba A, Milojevic M, Boer C,
De Somer F, Gudbjartsson T, van den Goor J, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur J Cardiothorac Surg.
2019;57(2):210-51.
12. Weber CF, Jambor C, Strasser C, Moritz A, Papadopoulos N, Zacharowski K,
et al. Normovolemic modified ultrafiltration is associated with better preserved platelet function and less postoperative blood loss in patients undergoing complex cardiac surgery: a randomized and controlled study.
J Thorac Cardiovasc Surg. 2011;141(5): 1298-304.
13. Münch F, Purbojo A, Cesnjevar R, Teske A. Update Hämofiltration und Hämoperfusion. Kardiotechnik. 2019;28(2):26-36.
14. Naik SK, Knight A, Elliott MJ. A successful modification of ultrafiltration for cardiopul- monary bypass in children.
Perfusion. 1991;6(1):41-50.
15. Bierer J, Stanzel R, Henderson M, Sett S, Horne D. Ultrafiltration in Pediatric Cardiac
Surgery Review. World J Pediatr Congenit Heart Surg. 2019;10(6):778-88.
16. Hu J, Li P, Chen X, Yan J, Zhang J, Zhang C. Effects of modified ultrafiltration and conventional ultrafiltration combination on perioperative clinical outcomes in pediatric cardiac surgery: A meta-analysis. Medicine (Baltimore). 2021;100(3):e24221.
17. Kuratani N, Bunsangjaroen P, Srimueang T, Masaki E, Suzuki T, Katogi T. Modified versus conventional ultrafiltration in pediatric cardiac surgery: a meta-analysis of randomized controlled trials comparing clinical outcome parameters. J Thorac Cardiovasc Surg. 2011;142(4):861-7.
18. Low ZK, Gao F, Sin KYK, Yap KH. Modified ultrafiltration reduces postoperative blood loss and transfusions in adult cardiac surgery: a meta-analysis of randomized controlled trials. Interact Cardiovasc Thorac Surg. 2021;32(5):671-82.
19. Münch F. MUF-DeLuxe – Erlanger Ver- fahren der modifizierten _Ultrafiltration. Kardiotechnik. 2003;4.
20. Datt B, Munro HM, DeCampli WM. The Novel Use of a Low Prime Modified Ultrafil- tration Apparatus in a 13-kg Jehovah’s Witness Patient: A Case Report.
J Extra Corpor Technol. 2018;50(3):178-83.
21. Shen J, Wang W, Zhang W, Jiang L,
Yang YY. A high-efficiency MUF method benefits postoperative hemodynamic stability and oxygen delivery in neonates with trans- position of great arteries. J Card Surg.
2019;34(6):468-73.
22. Harvey B, Shann KG, Fitzgerald D, Mejak B, Likosky DS, Puis L, et al. Inter- national pediatric perfusion practice: 2011 survey results.
J Extra Corpor Technol. 2012;44(4):186-93.
23. Itoh H, Sano S, Pouard P. Pediatric perfusion in Japan: 2010 practice survey. Perfusion. 2012;27(1):72-7.
24. Fudulu DP, Schadenberg A, Gibbison B, Jenkins I, Lightman S, Angelini GD, et al. Corticosteroids and Other Anti-Inflammatory Strategies in Pediatric Heart Surgery: A Nati- onal Survey of Practice. World J Pediatr Con- genit Heart Surg. 2018;9(3):289-93.
25. Walcƶak A, Klein T, Voss J, Olshove V, Gupta R, Averina T, et al. International Pedi- atric Perfusion Practice: 2016 Survey Results. J Extra Corpor Technol. 2021;53(1):7-26.
26. Wang S, Palanzo D, Ündar A. Current ultrafiltration techniques before, during and after pediatric cardiopulmonary bypass pro- cedures. Perfusion. 2012;27(5):438-46.
27. McRobb CM, Mejak BL, Ellis WC, Lawson DS, Twite MD. Recent Advances in Pediatric Cardiopulmonary Bypass. Semin
Cardiothorac Vasc Anesth. 2014;18(2):153-60.
28. De Rita F, Marchi D, Lucchese G, Barozzi L, Dissegna R, Menon T, et al. Comparison between D901 Lilliput 1 and Kids D100 neo- natal oxygenators: toward bypass circuit miniaturization.
Artif Organs. 2013;37(1):E24-8.
29. Münch F, Bakir B, Cesnjevar R, Blumauer R, Purbojo A, Teske A. Blutbasier- tes versus elektrolytbasiertes Priming. 2020.
30. Tiedge S, Klüß C, Amha M, Stockinger G, Neubert C, Münch F. Kinderperfusion in Deutschland 4.0 “Hardware”. Kardiotechnik. 2021;30(1):8-25.
31. Society of Thoracic Surgeons Blood Con- servation Guideline Task F, Ferraris VA, Brown JR, Despotis GJ, Hammon JW,
Reece TB, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines.
Ann Thorac Surg. 2011;91(3):944-82.
32. McRobb CM, Ing RJ, Lawson DS, Jaggers J, Twite M. Retrospective analysis of eliminating modified ultrafiltration after pediatric cardiopulmonary bypass. Perfusion. 2017;32(2):97-109.
33. Boettcher W, Sinzobahamvya N, Miera O, Redlin M, Dehmel F, Cho MY, et al. Routine Application of Bloodless Priming in Neonatal Cardiopulmonary Bypass: A 3-Year Expe- rience. Pediatr Cardiol. 2017;38(4):807-12.
34. Ziyaeifard M, Alizadehasl A, Massoumi G. Modified ultrafiltration during cardiopul- monary bypass and postoperative course of pediatric cardiac surgery.
Res Cardiovasc Med. 2014;3(2):e17830.
35. Sebastian R, Ahmed MI. Blood Conservati- on and Hemostasis Management in Pediatric Cardiac Surgery. Front Cardiovasc Med. 2021;8:689623.
36. Bauer F, Gary T, Gattringer T, Haas T, Kölblinger C, Neumeister P, et al. Gerinnung im klinischen Alltag. 8 ed: Interdisziplinäre Gerinnungsgruppe Steiermark; 2019 Okt 20019.
37. Torina AG, Silveira-Filho LM, Vilarinho KA, Eghtesady P, Oliveira PP, Sposito AC, et al. Use of modified ultrafiltration in adults
undergoing coronary artery bypass grafting is associated with inflammatory modulation and less postoperative blood loss: a randomized and controlled study. J Thorac Cardiovasc Surg. 2012;144(3):663-70.
38. Papadopoulos N, Bakhtiary F, Grün V, Weber CF, Strasser C, Moritz A. The effect of normovolemic modified ultrafiltration on in- flammatory mediators, endotoxins, terminal complement complexes and clinical outcome in high-risk cardiac surgery patients. Perfusion. 2013;28(4):306-14.
39. McNair ED, McKay WP, Mondal PK, Bryce RDT. Transfusion Use and Hemoglobin Levels by Blood Conservation Method After Cardiopulmonary Bypass. Ann Thorac Surg. 2020;110(5):1520-6.
40. Timpa JG, O’Meara LC, Goldberg KG, Phillips JP, Crawford JH, Jackson KW, et al. Implementation of a Multidisciplinary Blee- ding and Transfusion Protocol Significantly Decreases Perioperative Blood Product Utili- zation and Improves Some Bleeding Outcomes. J Extra Corpor Technol. 2016;48(1):11-8.
41. Milovanovic V, Bisenic D, Mimic B, Ali B, Cantinotti M, Soldatovic I, et al. Reevaluating the Importance of Modified Ultrafiltration in Contemporary Pediatric Cardiac Surgery.
J Clin Med. 2018;7(12).
42. Burra V, Sunil PK, Praveen NB, Nagaraja PS, Singh NG, Manjunatha N, et al.
Role of urinary PO(2) analysis during conven- tional versus conventional and modified ultra- filtration techniques in adult cardiac surgery. Ann Card Anaesth. 2020;23(1):43-7.
43. Ricci Z, Polito A, Netto R, De Razza F, Favia I, Carotti A, et al. Assessment of modi- fied ultrafiltration hemodynamic impact by pressure recording analytical method during pediatric cardiac surgery. Pediatr Crit Care Med. 2013;14(4):390-5.
44. Ziyaeifard M, Alizadehasl A, Aghdaii N, Rahimzadeh P, Masoumi G, Golzari SE, et al. The effect of combined conventional and modified ultrafiltration on mechanical venti-
lation and hemodynamic changes in congeni- tal heart surgery. J Res Med Sci. 2016;21:113.
45. Jia Z, Teng Y, Liu Y, Wang H, Li Y, Hou X. Influence of high-flow modified ultrafiltration on brain oxygenation and perfusion during surgery for children with ventricular septal defects: a pilot study. Perfusion. 2018;33(3):203-8.
46. Talwar S, Sujith NS, Rajashekar P, Makhija N, Sreenivas V, Upadhyay AD, et al. Modified ultrafiltration and postoperative course in patients undergoing repair of tetra- logy of fallot.
J Card Surg. 2021;36(10):3679-87.
47. Türköz A, Tuncay E, Balci ST, Can MG, Altun D, Türköz R, et al. The effect of modified ultrafiltration duration on pulmonary func- tions and hemodynamics in newborns and in- fants following arterial switch operation*. Pediatr Crit Care Med. 2014;15(7):600-7.
48. Bierer J, Henderson M, Stanzel R, Sett S, Horne D. Subzero balance – simple modified ultrafiltration (SBUF-SMUF) technique for pediatric cardiopulmonary bypass. Perfusion. 2021:2676591211027788.
49. Deptula J, Hammel J, George K, Detwiler J, Glogowski K, Valleley M, et al. Stage 1 pallia- tion for hypoplastic left heart syndrome with- out the use of allogeneic tissue, with reduced allogeneic blood product exposure: a case report. J Extra Corpor Technol. 2011;43(4):258-60.
50. Ratliff TM, Hodge AB, Preston TJ, Galantowicz M, Naguib A, Gomez D. Bloodless pediatric cardiopulmonary bypass for a 3.2-kg patient whose parents are of Jehovah’s Witness faith. J Extra Corpor Technol. 2014;46(2):173-6.
51. Zanaboni D, Min J, Seshadri R, Gaynor JW, Dreher M, Blinder JJ. Higher total ultra- filtration volume during cardiopulmonary by- pass-assisted infant cardiac surgery is asso- ciated with acute kidney injury and fluid over- load. Pediatr Nephrol. 2021;36(9):2875-81.
52. Wu T, Liu J, Wang Q, Li P, Shi G. Superior blood-saving effect and postoperative recove- ry of comprehensive blood-saving strategy in infants undergoing open heart surgery under cardiopulmonary bypass. Medicine (Baltimore). 2018;97(27):e11248.
53. Forsberg BC, Novick WM. A simplified approach to pediatric modified ultrafiltration: a novel circuit design.
J Extra Corpor Technol. 2013;45(4):259-61.
54. Kwak JG, Park M, Lee J, Lee CH. Multiple Approaches to Minimize Transfusions for Pediatric Patients in Open-Heart Surgery. Pediatr Cardiol. 2016;37(1):44-9.
55. Mohanlall R, Adam J, Nemlander A. Veno- arterial modified ultrafiltration versus con- ventional arteriovenous modified ultrafiltrati- on during cardiopulmonary bypass surgery. Ann Saudi Med. 2014;34(1):18-30.
56. Mejak BL, Ing RJ, McRobb C, Ellis WC, Lawson DS, Twite MD, et al. Cryoprecipitate and platelet administration during modified ultrafiltration in children less than 10 kg undergoing cardiac surgery. J Extra Corpor Technol. 2013;45(2):107-11.
57. Zhou G, Feng Z, Xiong H, Duan W, Jin Z. A combined ultrafiltration strategy during pediatric cardiac surgery: a prospective, randomized, controlled study with clinical outcomes. J Cardiothorac Vasc Anesth. 2013;27(5):897-902.
58. Abbas U, Loomba RS, Urbas C, Li Y,
El-Zein C. Effects of Modified Ultrafiltration
on Thromboelastographic Profile after Pedi- atric Cardiac Surgery. J Extra Corpor Tech- nol. 2021;53(1):50-6.
59. Cui B, Ou-Yang C, Xie S, Lin D, Ma J. Effects of different ventilation on cerebral oxygen saturation and cerebral blood flow before and after modified ultrafiltration in infants during ventricular septal defect repair. Cardiol Young. 2021;31(3):371-6.
60. Downey LA, Guzzetta NA. A Problem of Too Much Heterogeneity. Anesth Analg. 2020;130(6):1591-3.
Andreas Teske studierte an der Hochschule Furtwangen Medical Engineering (BSc) und ergänzte dies durch einen Master in Gesundheitsökonomie an der Friedrich-Alexander-Universität Erlangen-Nürnberg (MHBA). Seit September 2013 ist er am Universitätsklinikum Erlangen-Nürnberg als Perfusionist tätig. Schwerpunkte der klinischen und wissenschaftlichen Tätigkeit sind pädiatrische Perfusion, mechanische Kreislaufunterstützung und insbesondere die Therapie mit ECMO.
Für alle, die sich schon einmal im internen Bereich eingeloggt haben:
Bitte gib deinen Benutzernamen oder deine Mail-Adresse ein. Du erhältst eine E-Mail, zum einzuloggen.