KARDIOTECHNIK Ausgabe: 2020/4
https://doi.org/10.47624/kt.029.124

Literature Review of Large Patients Undergoing Cardio­ pulmonary Bypass: Concerns, Management and Future Considerations

C. Hamilton1, B. Engelhardt2, F. Weinbrenner2, D. Marin2

Schlüsselwörter

Kardiopulmonaler Bypass, Membranoxygenator, Sauerstoffverbrauch, Adipositas, parallele Oxygenatoren

Zusammenfassung

Keywords

Cardiopulmonary bypass, membrane oxygenator, oxygen consumption, obesity, parallel oxygenators

Abstract

Als Mitglied bekommen Sie an dieser Stelle den Volltext angezeigt. Bitte loggen Sie sich hier ein.

Nichtmitglieder wenden sich bei Interesse bitte an die Geschäftsstelle.

Literatur

[1] Lotia S, Bellamy MC. Anaesthesia and morbid obesity: Cardiovascular system: Contin Educ Anaesth Crit Care Pain 2008; 8 (5): 151-156.
[2] Cleland A, MacDonald J, Mayer R. Normothermic cardiopulmonary bypass in the larger patient. J Extra-Corp Technol 1989; 21(1): 21-23.
[3] Hamilton C. Case Study: Use of Two Parallel Oxygenators in a 159 Kilogram Patient during Cardiopulmonary Bypass. J Extra-Corp Technol 1993; 25(3): 101-104.
[4] Gygax E, Schupbach P, Carrel TP. ­Thoracoabdominal Aortic Repair in a 190-kg Patient: Optimized Perfusion With Two Oxygenators. Ann Thorac Surg 2001;71:347–349.
[5] Lonský V, Mandák J, Kubícek J, Volt M, Procházka E, Dominik J. Use of two parallel oxygenators in a very large patient (2.76 m2) for an acute “A” dissecting aortic aneurysm repair. Acta Medica (Hradec Kralove) 2005;48(2):95-98.
[6] Hill AG, Lefrak EA. Cardiopulmonary bypass in the massive patient. Proc Amer Acad CV perf, Jan 1984; 5: 173-176.
[7] Molnar J, Colah S, Larobina M, Large SR, Arrowsmith JE, Klein AA. Cardiopulmonary bypass and deep hypothermic circulatory arrest in a massively obese patient Perfusion, July 2008; 23 (4): 243-245.
[8] Hunter KT 2nd1, Lopez AR, Yun KL. Emergent cardiopulmonary bypass for a 180-kilogram patient: support with a single oxygenator. J Extra Corpor Technol. 2013 Sep;45(3):178-182.
[9] Hamilton C, Marin D, Weinbrenner F, et al. A new method to measure oxygenator transfer performance during cardiopulmonary bypass: clinical testing using Medtronic Fusion oxygenator. Perfusion 2016: 1-8.
[10] Berger EC. The physiology of adequate perfusion. Mosby, 1979: 48.
[11] Majewski MB, Lee R, Dhabot D, McGee E, LeVan P. Hypoxemia on cardiopulmonary Bypass caused by a Patient’s Oxygen Consumption exceeding the Capacity of a Membrane Oxygenator. Journal of Cardiothoracic and Vasc anesthesia Case Report. 33 (9): 2521-24. doi.org/10.1053/j.jvca.2019.02.026
[12] Datt B, Pourmoghadam K, Munro H, DeCampli W. Gravity Venous Drainage and the 3/8-Inch Venous Line: What Would Poiseuille Do? J Extra Corpor Technol 2019;51:78-82
[13] Ranucci M, Romitti F, Isgrò G, Cotza M, Brozzi S, Boncilli A, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg 2005;80(6): 2213-20.
[14] Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW.. Integrative physiology of human adipose tissue. International Journal of Obesity 2003. 27: 875-888. doi:10.1038/sj.ijo.0802326
[15] Lee MH, Gisnarian CJ, Shann KG. Improved Estimation of Total Blood Volume Can Provide a Reliable Prediction of Dilutional Hematocrit and Oxygen Delivery during Cardiopulmonary Bypass. J Extra Corpor Technol. 2019;51:67-72.
[16] Medtronic user’s manual. Medtronic Affinity Fusion® Instructions for use 2013/JUN/25 at 11:34 a.m. Doc number: M955734A001 Rev. 1A.
[17] Mekontso-Dessap A, Castelain V, Anguel N, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 2002;28:272-277.
[18] Shuter B, Aslani A. Body surface area: Du Bois and Du Bois revisited. Eur J Appl Physiol. 2000 Jun;82(3):250-254.
[19] Alston PR, Anderson A, Sanger K. Is body surface area still the best way to determine pump flow rate during cardiopulmonary bypass? Perfusion 2006; 21: 139. doi: 10.1191/0267659106pf865oa
[20] Blessing JM, Riley JB. Lean Flow: Optimizing Cardiopulmonary Bypass Equipment and Flow for Obese Patients—A Technique Article. J Extra Corpor Technol 2017;49:30-35
[21] 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. European Journal of Cardio-Thoracic Surgery 00 (2019) 1-42. doi:10.1093/ejcts/ezz267
[22] Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage. Implications for drug therapy. Clin Pharmacokinet 1994 Apr; 26(4):292-307.
[23] Ranucci M, Isgrò I, Romitti F, et al. Anaerobic Metabolism During Cardiopulmonary Bypass: Predictive Value of Carbon Dioxide Derived Parameters. Ann Thorac Surg 2006;81:2189–95.
[24] 2017 Association for the Advancement of Medical Instrumentation: ANSI/AAMI/ISO 7199:2016.

Appendix 1:
Body Mass Index formula:

BMI (kg/m2) = weight (kg) / Height (m*m)
Where kg is kilograms and m is meters.

Appendix 2:
CaO2: CaO2 mlO2/L = Hgb*1.36*SaO2

Delivery of Oxygen Index formula:
DaO2i = Hgb(gms/l) * 1.36(mlO2/gmHgb) * CI (l/min/m2) * SaO2 + paO2 * 0.03(mlO₂/mmHg/l) * CI

Where DaO2i is the delivery of oxygen index in mlO2/min/m2, Hgb is the hemoglobin in gms/l, the Hüfner factor is 1.36 mlO2/gmHgb, CI is the cardiac index in l/min/m2, the SaO2 is the arterial saturation as a fraction, and paO2 is the pressure of oxygen in mmHg.

For ease of calculation, the modified short form may be used during CPB: DaO2i = (Hgb*1.36* CI).

*Since this short form does not include the pO2s, the SaO2 is considered to be 1.

Appendix 3:
Dilutional hematocrit formula

TBV = dilutional HCT*(Volume preCPB+ Prime volume)/(drop in HCT)

TBV is Total Blood Volume in ml, dilutional HCT is the first hematocrit taken on CPB, volume pre-CPB is the volume given and volume lost pre-CPB, plus the prime volume in ml, and the drop in hematocrit is the difference between the HCT pre-CPB and the HCT on CPB.

Appendix 4:
Calculating cFiO2:150 mmHg:

Step 1) Convert PaO2 into a fraction (FaO2) by ­taking the PaO2 and dividing this by the ­barometric pressure (Pb) minus the water vapor pressure of 47 mmHg (713).

*Pb = Barometric pressure (taken as 760 mmHg).

PaO2 /(Pb–PH2O)

Step 2) The FiO2 minus the FaO2 gives the anoxic fractional difference (AFD). The AFD is the FiO2 at which the PaO2 is zero.

FiO2-FaO2 =AFD

Step 3) Add 0.21 to the AFD to obtain the cFiO2

Final formula: cFiO2:150 mmHg = FiO₂-(PaO2 /(713)+0.21

*The cFiO2 is referred to as the “cFiO2:150mmHg” so the standard of using a specific PaO2 is clearly stated.


Supportformular
Name  
E-Mail  
Betreff  
Beschreibung   
Anhang   Dateien anhängen
Sämtliche Dateien dürfen bis zu 20 MB groß sein.
   
powered by

Einloggen in den Mitgliederbereich

 Bitte benutzen Sie zum Einloggen die Mailadresse, die bei der DGfK hinterlegt ist oder Ihren Benutzernamen. Dieser besteht aus den ersten zwei Buchstaben Ihres Vornamens und ihrem Nachnamen.

Achtung: Die SEWOBE-Zugangsdaten sind ungültig geworden. Bitte loggen Sie sich per Link ein oder erstellen Sie sich ein neues Passwort im nächsten Reiter.