Als Mitglied bekommen Sie an dieser Stelle den Volltext angezeigt. Bitte loggen Sie sich hier ein.
Nichtmitglieder wenden sich bei Interesse bitte an die Geschäftsstelle.
C. Hamilton1, B. Engelhardt2, F. Weinbrenner2, D. Marin2
Patienten mit einer großen Körperoberfläche (KÖF) und einem hohen Body-Mass-Index (BMI) müssen häufig kurzfristig operiert werden. Als Vorbereitung für einen kardiopulmonalen Bypass (CPB) müssen dann unverzüglich Entscheidungen getroffen werden, unter anderem bezüglich der Hinzunahme eines zusätzlichen Oxygenators sowie des Blutvolumen-Managements und optimaler Kanülierung.
Das Ziel dieses Literaturreview war es, die Publikationen zu großen Patienten, die einen CPB benötigen, im Hinblick auf Perfusionssysteme und Bedenken hinsichtlich der Behandlung und auftretender Probleme zu analysieren. Bei der Literatursuche wurden insgesamt 8 Publikationen gefunden, von denen 7 Fallberichte waren und eine Teil einer größeren wissenschaftlichen Arbeit. Der letzte Fallbericht enthält außerdem eine umfassende Beschreibung des Perfusionsmanagements.
Alle Publikationen beschreiben Patienten mit KÖF-Werten zwischen 2,68 m2 und
3,2 m2. Die größten Bedenken betrafen die Fähigkeit des Oxygenators, den so großen Patienten adäquat mit Sauerstoff zu versorgen und angesichts des stärkeren Blutflusses einen angemessenen venösen Rückfluss zu gewährleisten. Bei überhöhtem Blutvolumen wurden entweder zusätzliche Behälter oder Blutbeutel eingesetzt, um das Volumen zurückzutransportieren. Die Effizienz von Wärmetauschern wird erwähnt, scheint aber in keinem Fall problematisch gewesen zu sein. Manche Schwierigkeiten, den vollen Fluss zu erreichen, werden mit hohem arteriellem Blutdruck begründet, doch die größten Probleme betrafen Einschränkungen des Blutflusses aufgrund von unzureichendem venösem Rückfluss.
Patients with large body surface areas (BSA) and excessive body mass indices often arrive in the operating theatre on short notice and a prompt decision has to be made in preparation for cardiopulmonary bypass (CPB), which may include the addition of an extra oxygenator, along with blood volume management and optimizing cannulation.
The goal of this review was to analyze the publications on large patients requiring CPB in terms of the type of perfusion systems, concerns regarding management and problems encountered. In the literature search, a total of eight publications were found in which seven were in the form of case reports and one was part of an original paper. Also, the last case report will entail an extensive description on perfusion management.
All publications describe patients with BSA values ranging from 2.68 m2 to 3.2 m2. The main concerns were the capability of the oxygenator to adequately oxygenate the patient of such a large size and the adequacy of venous drainage given the higher blood flows. Excessive blood volumes were managed with either an extra reservoir or blood bags to remove volume. Heat exchanger efficiency was mentioned but did not seem to be problematic in any case. Some difficulties reaching full flows were due to high arterial line pressures but the main problems encountered were blood flow limitations due to poor venous drainage.
[1] Lotia S, Bellamy MC. Anaesthesia and morbid obesity: Cardiovascular system: Contin Educ Anaesth Crit Care Pain 2008; 8 (5): 151-156.
[2] Cleland A, MacDonald J, Mayer R. Normothermic cardiopulmonary bypass in the larger patient. J Extra-Corp Technol 1989; 21(1): 21-23.
[3] Hamilton C. Case Study: Use of Two Parallel Oxygenators in a 159 Kilogram Patient during Cardiopulmonary Bypass. J Extra-Corp Technol 1993; 25(3): 101-104.
[4] Gygax E, Schupbach P, Carrel TP. Thoracoabdominal Aortic Repair in a 190-kg Patient: Optimized Perfusion With Two Oxygenators. Ann Thorac Surg 2001;71:347–349.
[5] Lonský V, Mandák J, Kubícek J, Volt M, Procházka E, Dominik J. Use of two parallel oxygenators in a very large patient (2.76 m2) for an acute “A” dissecting aortic aneurysm repair. Acta Medica (Hradec Kralove) 2005;48(2):95-98.
[6] Hill AG, Lefrak EA. Cardiopulmonary bypass in the massive patient. Proc Amer Acad CV perf, Jan 1984; 5: 173-176.
[7] Molnar J, Colah S, Larobina M, Large SR, Arrowsmith JE, Klein AA. Cardiopulmonary bypass and deep hypothermic circulatory arrest in a massively obese patient Perfusion, July 2008; 23 (4): 243-245.
[8] Hunter KT 2nd1, Lopez AR, Yun KL. Emergent cardiopulmonary bypass for a 180-kilogram patient: support with a single oxygenator. J Extra Corpor Technol. 2013 Sep;45(3):178-182.
[9] Hamilton C, Marin D, Weinbrenner F, et al. A new method to measure oxygenator transfer performance during cardiopulmonary bypass: clinical testing using Medtronic Fusion oxygenator. Perfusion 2016: 1-8.
[10] Berger EC. The physiology of adequate perfusion. Mosby, 1979: 48.
[11] Majewski MB, Lee R, Dhabot D, McGee E, LeVan P. Hypoxemia on cardiopulmonary Bypass caused by a Patient’s Oxygen Consumption exceeding the Capacity of a Membrane Oxygenator. Journal of Cardiothoracic and Vasc anesthesia Case Report. 33 (9): 2521-24. doi.org/10.1053/j.jvca.2019.02.026
[12] Datt B, Pourmoghadam K, Munro H, DeCampli W. Gravity Venous Drainage and the 3/8-Inch Venous Line: What Would Poiseuille Do? J Extra Corpor Technol 2019;51:78-82
[13] Ranucci M, Romitti F, Isgrò G, Cotza M, Brozzi S, Boncilli A, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg 2005;80(6): 2213-20.
[14] Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW.. Integrative physiology of human adipose tissue. International Journal of Obesity 2003. 27: 875-888. doi:10.1038/sj.ijo.0802326
[15] Lee MH, Gisnarian CJ, Shann KG. Improved Estimation of Total Blood Volume Can Provide a Reliable Prediction of Dilutional Hematocrit and Oxygen Delivery during Cardiopulmonary Bypass. J Extra Corpor Technol. 2019;51:67-72.
[16] Medtronic user’s manual. Medtronic Affinity Fusion® Instructions for use 2013/JUN/25 at 11:34 a.m. Doc number: M955734A001 Rev. 1A.
[17] Mekontso-Dessap A, Castelain V, Anguel N, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 2002;28:272-277.
[18] Shuter B, Aslani A. Body surface area: Du Bois and Du Bois revisited. Eur J Appl Physiol. 2000 Jun;82(3):250-254.
[19] Alston PR, Anderson A, Sanger K. Is body surface area still the best way to determine pump flow rate during cardiopulmonary bypass? Perfusion 2006; 21: 139. doi: 10.1191/0267659106pf865oa
[20] Blessing JM, Riley JB. Lean Flow: Optimizing Cardiopulmonary Bypass Equipment and Flow for Obese Patients—A Technique Article. J Extra Corpor Technol 2017;49:30-35
[21] 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. European Journal of Cardio-Thoracic Surgery 00 (2019) 1-42. doi:10.1093/ejcts/ezz267
[22] Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage. Implications for drug therapy. Clin Pharmacokinet 1994 Apr; 26(4):292-307.
[23] Ranucci M, Isgrò I, Romitti F, et al. Anaerobic Metabolism During Cardiopulmonary Bypass: Predictive Value of Carbon Dioxide Derived Parameters. Ann Thorac Surg 2006;81:2189–95.
[24] 2017 Association for the Advancement of Medical Instrumentation: ANSI/AAMI/ISO 7199:2016.
Appendix 1:
Body Mass Index formula:
BMI (kg/m2) = weight (kg) / Height (m*m)
Where kg is kilograms and m is meters.
Appendix 2:
CaO2: CaO2 mlO2/L = Hgb*1.36*SaO2
Delivery of Oxygen Index formula:
DaO2i = Hgb(gms/l) * 1.36(mlO2/gmHgb) * CI (l/min/m2) * SaO2 + paO2 * 0.03(mlO₂/mmHg/l) * CI
Where DaO2i is the delivery of oxygen index in mlO2/min/m2, Hgb is the hemoglobin in gms/l, the Hüfner factor is 1.36 mlO2/gmHgb, CI is the cardiac index in l/min/m2, the SaO2 is the arterial saturation as a fraction, and paO2 is the pressure of oxygen in mmHg.
For ease of calculation, the modified short form may be used during CPB: DaO2i = (Hgb*1.36* CI).
*Since this short form does not include the pO2s, the SaO2 is considered to be 1.
Appendix 3:
Dilutional hematocrit formula
TBV = dilutional HCT*(Volume preCPB+ Prime volume)/(drop in HCT)
TBV is Total Blood Volume in ml, dilutional HCT is the first hematocrit taken on CPB, volume pre-CPB is the volume given and volume lost pre-CPB, plus the prime volume in ml, and the drop in hematocrit is the difference between the HCT pre-CPB and the HCT on CPB.
Appendix 4:
Calculating cFiO2:150 mmHg:
Step 1) Convert PaO2 into a fraction (FaO2) by taking the PaO2 and dividing this by the barometric pressure (Pb) minus the water vapor pressure of 47 mmHg (713).
*Pb = Barometric pressure (taken as 760 mmHg).
PaO2 /(Pb–PH2O)
Step 2) The FiO2 minus the FaO2 gives the anoxic fractional difference (AFD). The AFD is the FiO2 at which the PaO2 is zero.
FiO2-FaO2 =AFD
Step 3) Add 0.21 to the AFD to obtain the cFiO2
Final formula: cFiO2:150 mmHg = FiO₂-(PaO2 /(713)+0.21
*The cFiO2 is referred to as the “cFiO2:150mmHg” so the standard of using a specific PaO2 is clearly stated.
Bitte gib deinen Benutzernamen oder deine Mail-Adresse ein. Du erhältst eine E-Mail, zum einzuloggen.