Suchen
Generic filters
Nur exakte Ergebnisse
Im Titel sucheh
Im Inhalt suchen
Search in excerpt
Filter by Custom Post Type
herzzentrum
publikation
post
page
mec-events
KARDIOTECHNIK Ausgabe: 2021/4; 030(4):155-162
DOI: https://doi.org/10.47624/kt.030.155

Beurteilung eines nicht-invasiven Online-Messverfahrens während der extrakorporalen Zirkulation

Kwapil1, 2; A. Teske1, 2; F. Wenzel3; F. Born4; F. Münch1

 

1 Kinderherzchirurgie Erlangen, Loschgestraße 15, 91054 Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg

2 WKK Perfusionsservice GmbH & Co.KG, Wernher-von-Braun-Straße 5, 55129 Mainz-Hechtsheim

3 Hochschule Furtwangen University, Fakultät Medical and Life Science, Jakob-Kienzle-Str. 16, 78054 Villingen-Schwenningen

4 Herzchirurgische Klinik und Poliklinik, Klinikum der Universität München, Marchioninistraße 15, 81377 München

Schlüsselwörter

Sauerstoffextraktionsrate, DO/VO, goal directed perfusion, Online-Monitoring, Mikrozirkulation, Gewebesättigung

Zusammenfassung

Keywords

Oxygen extraction rate, DO2/VO2, goal directed perfusion, online monitoring, microcirculation, tissue saturation

Abstract

Als Mitglied bekommen Sie an dieser Stelle den Volltext angezeigt. Bitte loggen Sie sich hier ein.

Nichtmitglieder wenden sich bei Interesse bitte an die Geschäftsstelle.

Literatur

1. Burt BM, ElBardissi AW, Huckman RS, Cohn LH, Cevasco MW, Rawn JD, et al. Influence of experience and the surgical learning curve on long-term patient outcomes in cardiac surgery. The Journal of thoracic and cardiovascular surgery.
2015;150(5):1061-7, 8 e1-3. doi: 10.1016/j.jtcvs.2015.07.068.
2. Huang RSP, Nedelcu E, Bai Y, Wahed A, Klein K, Tint H, et al. Post-operative bleeding risk stratification in cardiac pulmonary bypass patients using artificial neural network. Ann Clin Lab Sci. 2015;45(2):181-6.
3. Landis RC, Brown JR, Fitzgerald D, Likosky DS, Shore-Lesserson L, Baker RA, et al. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: a critical review of the evidence base.
The journal of extra-corporeal technology. 2014;46(3):197-211.
4. Salameh A, Dhein S. Strategies for pharmacological organoprotection during extracorporeal circulation targeting ischemia-reperfusion injury. frontiers in pharmacology. 2015;6:296. doi: 10.3389/fphar.2015.00296.
5. Anastasiadis K, Murkin J, Antonitsis P, Bauer A, Ranucci M, Gygax E, et al. Use of minimal invasive extracorporeal circulation in cardiac surgery: principles, definitions and potential benefits. A position paper from the minimal invasive extracorporeal technologies international society (MiECTiS). Interactive cardiovascular and thoracic surgery. 2016;22(5):647-62. doi: 10.1093/icvts/ivv380.
6. Authors/Task Force M, Kunst G, Milojevic M, Boer C, De Somer F, Gudbjartsson T, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. British journal of anaesthesia. 2019;123(6):713-57.
doi: 10.1016/j.bja.2019.09.012.
7. Annich G, Lynch W, MacLaren G, Wilson J, Barlett R. ECMO Extracorporeal cardiopulmonary support in criticl care.Ann Arbor, michigan: 2012.
8. Steiner ME, Ness PM, Assmann SF, Triulzi DJ, Sloan SR, Delaney M, et al. Effects of red-cell storage duration on patients undergoing cardiac surgery. The New England journal of medicine. 2015;372(15):1419-29. doi: 10.1056/NEJMoa1414219.
9. Magruder JT, Dungan SP, Grimm JC, Harness HL, Wierschke C, Castillejo S, et al. Nadir oxygen delivery on bypass and hypotension increase acute kidney injury risk after cardiac operations. The Annals of thoracic surgery. 2015;100(5):1697-703. doi: 10.1016/j.athoracsur.2015.05.059.
10. Ranucci M, Aloisio T, Carboni G, Ballotta A, Pistuddi V, Menicanti L, et al. Acute kidney injury and hemodilution during cardiopulmonary bypass: A changing scenario. The annals of thoracic surgery.
2015;100(1):95-100. doi: 10.1016/j.athoracsur.2015.02.034.
11. Mitulla F, Kwapil N, Haupt B, Münch F. Entwicklung des Sauerstoffverbrauchs in den verschiedenen Stadien der Hypothermie. Kardiotechnik. 2021;30(3):13. doi: 10.47624/kt.030.106.
12. Studio GT, Schartl M, Gessler M, von Eckardstein A. Biochemie und Molekularbiologie des Menschen. Elsevier Health Sciences Germany; 2013.
13. Habicher M, von Heymann C, Spies CD, Wernecke KD, Sander M. Central venous-arterial pCO2 difference identifies microcirculatory hypoperfusion in cardiac surgical patients with normal central venous oxygen saturation: a retrospective analysis. Journal of cardiothoracic and vascular anesthesia. 2015;29(3):646-55. doi: 10.1053/j.jvca.2014.09.006.
14. Huch R, Jürgens KD. Mensch Körper Krankheit. Elsevier Health Sciences Germany; 2013.
15. Perimed Hv. Schamtische Darstellung Mikrozirkulationsmessung (1) inklusive Hitzeprovokation (2). [https://wwwperimed-instrumentscom/de/Laser-Doppler-mit-Waermeprovokation] (Zugriff am 21022016].
16. Rithalia SV, George RJ, Tinker J. Continuous tissue pH and transcutaneous PO2 measurement as an index of tissue perfusion in critically ill patients. Resuscitation. 1981;9(1):67-74. doi: 10.1016/0300-9572(81)90035-6.
17. Perneger TV. What’s wrong with Bonferroni adjustments. BMJ (Clinical research ed). 1998;316(7139):1236-8. doi: 10.1136/bmj.316.7139.1236.
18. Arnold RC, Dellinger RP, Parrillo JE, Chansky ME, Lotano VE, McCoy JV, et al. Discordance between microcirculatory alterations and arterial pressure in patients with hemodynamic instability. Journal of critical care. 2012;27(5):531 e1-7.
doi: 10.1016/j.jcrc.2012.02.007.
19. Koning NJ, Vonk AB, Meesters MI, Oomens T, Verkaik M, Jansen EK, et al. Microcirculatory perfusion is preserved during off-pump but not on-pump cardiac surgery. Journal of cardiothoracic and vascular anesthesia. 2014;28(2):336-41.
doi: 10.1053/j.jvca.2013.05.026.
20. Dong GH, Wang CT, Li Y, Xu B, Qian JJ, Wu HW, et al. Cardiopulmonary bypass induced microcirculatory injury of the small bowel in rats. World journal of gastroenterology. 2009;15(25):3166-72.
doi: 10.3748/wjg.15.3166.
21. Elbers PW, Wijbenga J, Solinger F, Yilmaz A, van Iterson M, van Dongen EP, et al. Direct observation of the human microcirculation during cardiopulmonary bypass: effects of pulsatile perfusion. Journal of cardiothoracic and vascular anesthesia. 2011;25(2):250-5. doi: 10.1053/j.jvca.2010.06.014.
22. Salgado MA, Salgado-Filho MF, Reis-Brito JO, Lessa MA, Tibirica E. Effectiveness of laser Doppler perfusion monitoring in the assessment of microvascular function in patients undergoing on-pump coronary artery bypass grafting. Journal of cardiothoracic and vascular anesthesia. 2014;28(5):1211-6. doi: 10.1053/j.jvca.2014.03.003.
23. Otto KA. Therapeutic hypothermia applicable to cardiac surgery. Veterinary anaesthesia and analgesia. 2015;42(6):559-69. doi: 10.1111/vaa.12299.
24. Liguori GR, Kanas AF, Moreira LF. Managing the inflammatory response after cardiopulmonary bypass: review of the studies in animal models. Revista brasileira de cirurgia cardiovascular : orgao oficial da Socieda-de Brasileira de Cirurgia Cardiovascular. 2014;29(1):93-102. doi: 10.5935/1678-9741.20140017.
25. Dedichen HH, Hisdal J, Aadahl P, Nordhaug D, Olsen PO, Kirkeby-Garstad I. Elevated arterial lactate concentrations early after coronary artery bypass grafting are associated with increased anaerobic metabolism in skeletal muscle. Journal of cardiothoracic and vascular anesthesia. 2015;29(2):367-73. doi: 10.1053/j.jvca.2014.08.001.
26. O’Connor E, Fraser JF. The interpretation of perioperative lactate abnormalities in patients undergoing cardiac surgery. Anaesthesia and intensive care. 2012;40(4):598-603. doi: 10.1177/0310057X1204000404.
27. Ranucci M, Carboni G, Cotza M, Bianchi P, Di Dedda U, Aloisio T, et al. Hemodilution on cardiopulmonary bypass as a determinant of early postoperative hyperlactatemia. PloS one. 2015;10(5):e0126939. doi: 10.1371/journal.pone.0126939.
28. Ranucci M, De Toffol B, Isgro G, Romitti F, Conti D, Vicentini M. Hyperlactatemia during cardiopulmonary bypass: determinants and impact on postoperative outcome. Critical care (London, England). 2006;10(6):R167.
doi: 10.1186/cc5113.
29. Hajjar LA, Almeida JP, Fukushima JT, Rhodes A, Vincent JL, Osawa EA, et al. High lactate levels are predictors of major complications after cardiac surgery. The Journal of thoracic and cardiovascular surgery. 2013;146(2):455-60. doi: 10.1016/j.jtcvs.2013.02.003.
30. Fujii Y, Shirai M, Tsuchimochi H, Pearson JT, Takewa Y, Tatsumi E, et al. Hyperoxic condition promotes an inflammatory response during cardiopulmonary bypass in a rat model. Artificial organs. 2013;37(12):1034-40. doi: 10.1111/aor.12125.
31. Helmerhorst HJ, Arts DL, Schultz MJ, van der Voort PH, Abu-Hanna A, de Jonge E, et al. Metrics of arterial hyperoxia and associated outcomes in critical care. Critical care medicine. 2017;45(2):187-95.
doi: 10.1097/ccm.0000000000002084.
32. Bierbach B, Bomberg H, Pritzer H, Prabhu S, Petzina R, Kempski O, et al. Off-pump coronary artery bypass prevents visceral organ damage. Interactive cardiovascular and thoracic surgery. 2014;18(6):717-26. doi: 10.1093/icvts/ivu063.
33. Ottens J, Tuble SC, Sanderson AJ, Knight JL, Baker RA. Improving cardiopulmonary bypass: does continuous blood gas monitoring have a role to play? The journal of extracorporeal technology. 2010;42(3):191-8.

Logo der DGfKT

Einloggen in den Mitgliederbereich

Nutzen Sie Ihre SEWOBE-Zugangsdaten oder schreiben Sie an die Geschäftsstelle um sich freischalten zu lassen.

Alternativ können Sie sich hier registrieren.

Einloggen als Mitglied
×